Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Amino-N-(2-methoxyphenyl)-4,5,6,7tetrahydro-1-benzothiophene-3-carboxamide

K. Chandra Kumar,^a M. K. Kokila,^b* Puttaraja,^b S. Mohan^c and J. Saravanan^c

^aDepartment of Engineering Physics, H. K. B. K. College of Engineering, Nagawara, Bangalore 560045, Karnataka, India, ^bDepartment of Physics, Bangalore University, Bangalore 560056, Karnataka, India, and ^cP. E. S. College of Pharmacy, Hanumanthanagar, Bangalore 560050, Karnataka, India Correspondence e-mail: prmkkgroup@gmail.com

Received 9 May 2007; accepted 17 May 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.052; wR factor = 0.147; data-to-parameter ratio = 14.8.

In the title compound, $C_{16}H_{18}N_2O_2S$, the *o*-methoxyphenyl group is not coplanar with the thiophene ring, making a dihedral angle of 12.9 (1)°. The crystal structure is stabilized by intramolecular $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds and by intermolecular N-H···O interactions.

Related literature

For related literature, see: Gewald et al. (1966); Cremer & Pople (1975); Cohen et al. (1977); Csaszar & Morvay (1983); Lakshmi et al. (1985); Mohan & Saravanan (2003).

Experimental

Crystal data

 $C_{16}H_{18}N_2O_2S$ $M_r = 302.38$ Monoclinic, $P2_1/n$ a = 8.709 (2) Å b = 8.576 (2) Å c = 20.306(5) Å $\beta = 90.742 \ (4)^{\circ}$

V = 1516.6 (6) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.22 \text{ mm}^{-1}$ T = 293 (2) K $0.48 \times 0.25 \times 0.04 \text{ mm}$ 10964 measured reflections

 $R_{\rm int} = 0.035$

2831 independent reflections

2266 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.937, T_{\rm max} = 0.998$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.052$	191 parameters
$wR(F^2) = 0.147$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$
2831 reflections	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$D - H \cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
	$N1 - H1A \cdots O1$ $N1 - H1B \cdots O1^{i}$ $N2 - H2 \cdots O2$ $C16 - H16 \cdots O1$	0.86 0.86 0.86 0.93	2.27 2.28 2.19 2.39	2.823 (3) 3.015 (3) 2.577 (3) 2.927 (3)	122 143 107 117

Symmetry code: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PARST (Nardelli, 1995); PLATON (Spek, 2003).

The authors are grateful to Professor T. N. Guru Row, Indian Institute of Science and Department of Science and Technology, India, for data collection on the CCD facility, and Bangalore University. CK thanks the Management, Administrator and Principal of H. K. B. K. College of Engineering for encouragement and support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2031).

References

Bruker (1998). SMART (Version 5.0) and SAINT (Version 4.0). Bruker AXS Inc. Madison Wisconsin USA.

Cohen, V. I., Rist, N. & Duponchel, C. (1977). J. Pharm. Sci. 66, 1332-1334.

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Csaszar, J. & Morvay, J. (1983). Acta Pharm. Hung. 53, 121-128.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gewald, K., Schinke, E. & Botcher, H. (1966). Chem. Ber. 99, 94-100.
- Lakshmi, V. V., Sridhar, P. & Polsa, H. (1985). Indian J. Pharm. Sci. 23, 327-336
- Mohan, S. & Saravanan, J. (2003). Asian J. Chem. 15, 67-70.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2007). E63, o3009 [doi:10.1107/81600536807024403]

2-Amino-N-(2-methoxyphenyl)-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxamide

K. Chandra Kumar, M. K. Kokila, Puttaraja, S. Mohan and J. Saravanan

Comment

The title compound (I) is one of a series of 3-aryl carboximides. These compounds display different biological activities, such as antitubercular, antibacterial and antifungal activities (Mohan & Saravanan 2003). Schiff bases containing sulfur are the most effective (Csaszar & Morvay 1983; Lakshmi *et al.*, 1985; Cohen *et al.*, 1977).

The molecular structure and the packing diagram of (I) are shown in Figures (1) and (2) respectively. The thiophene ring is essentially planar, with a short C8—C9 bond distance [1.352 (3) Å,], indicating the absence of delocalization in the double bonds. This is also reflected in the S1—C2 and S1—C8 distances, which are shorter than the normal C—S distances. The cyclohexene ring adopts a half-chair conformation, with the puckering parameters $q_2 = 0.325$ (2) Å, $\Phi = -99.4$ (3)° and $\theta = 130.7$ (2)°. (Cremer & Pople, 1975; Spek, 2003). The thiophene ring makes a dihedral angle of 12.9 (1) ° with the *o*-methoxyphenyl ring.

The molecular structure of (I) is stabilized by intramolecular C—H···O and N—H···O hydrogen bonds and by intermolecular N—H···O interactions. (Table 2) The intramolecular C16—H16···O1 and N1—H1···O1 hydrogen bonds form pseudo-six membered rings and N2—H2···O2 forms a pseudo five membered ring, thus locking the molecular conformation and eliminating flexibility. Molecules are linked *via* N—H···O interactions, forming zigzag chains along the *c* axis, (Fig. 2).

Experimental

The title compound (I), was synthesized by mixing cyclohexanone (0.98 g, 0.01 mol) and *o*-methoxycyanoacetanilide (1.94 g, 0.01 mol) and refluxing for 1 h (Gewald *et al.*, 1966) in the presence of 4.0 ml of diethylamine. Sulfur powder (1.28 g, 0.04 mol) and 40 ml e thanol were then added, and the resulting solution was heated for 2 h at 323 K. Crystals of (I) were grown by slow evaporation from a solution in 2-propanol (yield 68%).

Refinement

H atoms were positioned geometrically [N—H = 0.86 Å, and C—H = 0.93 (CH), 0.97 (CH₂) and 0.96 Å (CH₃)] and constrained to ride on their parent atoms with $U_{iso}(H)$ values of 1.2 $U_{eq}(C,N)$, or 1.5 $U_{eq}(C$ -methyl). A rotating-group model was used for the methyl group.

Figures

Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. Dashed lines indicate intramolecular hydrogen bonds.

Fig. 2. The packing of (I), viewed down the *a* axis shows molecules connected by N—H···O hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted.

2-Amino-N-(2-methoxyphenyl)-4,5,6,7-tetrahydrobenzo-1-thiophene-3-carboxamide

Crystal data $F_{000} = 640$ $C_{16}H_{18}N_2O_2S$ $M_r = 302.38$ $D_{\rm x} = 1.324 \text{ Mg m}^{-3}$ Mo Ka radiation Monoclinic, $P2_1/n$ $\lambda = 0.71073 \text{ Å}$ Hall symbol: -P 2yn Cell parameters from 520 reflections $\theta = 1.5 - 28.5^{\circ}$ a = 8.709 (2) Åb = 8.576(2) Å $\mu = 0.22 \text{ mm}^{-1}$ c = 20.306 (5) ÅT = 293 (2) K $\beta = 90.742 \ (4)^{\circ}$ Prism, colourless $0.48 \times 0.25 \times 0.04 \text{ mm}$ V = 1516.6 (6) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer	2831 independent reflections
Radiation source: fine-focus sealed tube	2266 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.035$

T = 273(2) K	$\theta_{max} = 25.5^{\circ}$
ψ and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 9$
$T_{\min} = 0.937, \ T_{\max} = 0.998$	$k = -10 \rightarrow 10$
10964 measured reflections	$l = -24 \rightarrow 24$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.052$	H-atom parameters constrained
$wR(F^2) = 0.147$	$w = 1/[\sigma^2(F_o^2) + (0.0762P)^2 + 0.3763P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.09	$(\Delta/\sigma)_{\rm max} < 0.001$
2831 reflections	$\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$
191 parameters	$\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.2332 (3)	0.4280 (3)	0.75854 (10)	0.0537 (6)
H1A	0.2921	0.3616	0.7397	0.064*
H1B	0.2625	0.4724	0.7945	0.064*
N2	0.0765 (2)	0.3030 (2)	0.56763 (9)	0.0431 (5)
H2	0.0161	0.3775	0.5558	0.052*
01	0.2092 (2)	0.2087 (2)	0.65522 (8)	0.0568 (5)
O2	-0.0842 (2)	0.3124 (2)	0.46026 (9)	0.0602 (6)
S1	-0.02268 (8)	0.59785 (8)	0.76968 (3)	0.0466 (2)
C2	0.0936 (3)	0.4630 (3)	0.73142 (10)	0.0372 (5)
C3	0.0248 (3)	0.4060 (2)	0.67459 (10)	0.0332 (5)
C4	-0.2396 (3)	0.4330 (3)	0.60860 (13)	0.0457 (6)
H4A	-0.2363	0.3217	0.6001	0.055*

H4B	-0.2100	0.4866	0.5687	0.055*
C5	-0.4026 (3)	0.4794 (4)	0.62600 (17)	0.0700 (9)
H5A	-0.4664	0.4747	0.5865	0.084*
H5B	-0.4428	0.4045	0.6572	0.084*
C6	-0.4136 (4)	0.6365 (4)	0.65456 (17)	0.0733 (9)
H6A	-0.5201	0.6572	0.6649	0.088*
H6B	-0.3827	0.7120	0.6217	0.088*
C7	-0.3169 (3)	0.6604 (4)	0.71594 (14)	0.0561 (7)
H7A	-0.2982	0.7709	0.7224	0.067*
H7B	-0.3716	0.6216	0.7539	0.067*
C8	-0.1664 (3)	0.5760 (3)	0.71018 (11)	0.0410 (6)
C9	-0.1266 (3)	0.4723 (2)	0.66323 (10)	0.0348 (5)
C10	0.1099 (3)	0.2970 (2)	0.63284 (10)	0.0358 (5)
C11	0.1258 (3)	0.2057 (3)	0.51622 (11)	0.0393 (5)
C12	0.0353 (3)	0.2094 (3)	0.45871 (11)	0.0440 (6)
C13	0.0714 (4)	0.1160 (3)	0.40563 (12)	0.0556 (7)
H13	0.0112	0.1187	0.3675	0.067*
C14	0.1965 (4)	0.0193 (3)	0.40959 (14)	0.0617 (8)
H14	0.2197	-0.0452	0.3743	0.074*
C15	0.2878 (4)	0.0167 (3)	0.46525 (15)	0.0608 (8)
H15	0.3732	-0.0483	0.4670	0.073*
C16	0.2536 (3)	0.1103 (3)	0.51877 (13)	0.0499 (6)
H16	0.3163	0.1089	0.5562	0.060*
C17	-0.2049 (4)	0.2966 (4)	0.41266 (14)	0.0665 (8)
H17A	-0.1654	0.3157	0.3695	0.100*
H17B	-0.2845	0.3705	0.4219	0.100*
H17C	-0.2460	0.1928	0.4146	0.100*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0486 (14)	0.0669 (15)	0.0452 (11)	0.0091 (11)	-0.0165 (10)	-0.0131 (10)
N2	0.0523 (13)	0.0423 (12)	0.0344 (10)	0.0187 (9)	-0.0073 (9)	-0.0032 (8)
01	0.0608 (12)	0.0652 (12)	0.0439 (9)	0.0288 (10)	-0.0142 (8)	-0.0020 (8)
O2	0.0615 (13)	0.0734 (13)	0.0450 (10)	0.0203 (10)	-0.0201 (9)	-0.0107 (9)
S1	0.0501 (4)	0.0524 (4)	0.0374 (3)	0.0024 (3)	-0.0013 (3)	-0.0102 (3)
C2	0.0389 (14)	0.0395 (12)	0.0331 (11)	-0.0031 (10)	-0.0017 (9)	0.0011 (9)
C3	0.0340 (13)	0.0343 (11)	0.0314 (10)	0.0010 (9)	-0.0031 (9)	0.0035 (9)
C4	0.0411 (15)	0.0415 (13)	0.0541 (14)	0.0050 (11)	-0.0126 (11)	-0.0061 (11)
C5	0.0432 (18)	0.078 (2)	0.089 (2)	0.0065 (15)	-0.0170 (15)	-0.0128 (17)
C6	0.0479 (19)	0.074 (2)	0.098 (2)	0.0185 (15)	-0.0123 (17)	-0.0151 (18)
C7	0.0481 (17)	0.0589 (17)	0.0614 (16)	0.0145 (13)	0.0041 (13)	-0.0069 (13)
C8	0.0386 (14)	0.0419 (13)	0.0426 (13)	0.0022 (10)	0.0014 (10)	-0.0003 (10)
C9	0.0356 (13)	0.0325 (11)	0.0362 (11)	-0.0010 (9)	-0.0016 (9)	0.0015 (9)
C10	0.0359 (13)	0.0352 (12)	0.0363 (11)	0.0027 (9)	-0.0063 (9)	0.0014 (9)
C11	0.0460 (15)	0.0355 (12)	0.0364 (11)	0.0016 (10)	0.0026 (10)	-0.0015 (9)
C12	0.0514 (16)	0.0437 (14)	0.0369 (12)	-0.0042 (11)	-0.0008 (11)	-0.0003 (10)
C13	0.070 (2)	0.0569 (16)	0.0405 (13)	-0.0074 (15)	0.0029 (12)	-0.0089 (11)

C14	0.082(2)	0.0519 (17)	0.0519 (15)	-0.0056 (15)	0.0210 (15)	-0.0133 (13)
	0.064 (2)	0.0492 (16)	0.0700 (18)	0.0133(14)	0.0207 (15)	-0.0047(13)
C16	0.0503 (16)	0.0492 (15)	0.0503 (14)	0.0104 (12)	0.0041 (12)	-0.0007(11)
CI7	0.065 (2)	0.077 (2)	0.0566 (16)	-0.0081 (16)	-0.0254 (14)	0.0132 (15)
Geometric par	cameters (Å, °)					
N1—C2		1.362 (3)	С6—	-C7	1.50	9 (4)
N1—H1A		0.8600	С6—	-H6A	0.97	00
N1—H1B		0.8600	С6—	H6B	0.97	00
N2-C10		1.353 (3)	С7—	-C8	1.50	4 (4)
N2-C11		1.408 (3)	С7—	-H7A	0.97	00
N2—H2		0.8600	С7—	-H7B	0.97	00
O1—C10		1.232 (3)	C8—	-C9	1.35	2 (3)
O2—C12		1.366 (3)	C11–	C16	1.38	2 (3)
O2—C17		1.425 (3)	C11–	C12	1.40	1 (3)
S1—C2		1.728 (2)	C12-	C13	1.38	3 (3)
S1—C8		1.738 (2)	C13–	C14	1.37	0 (4)
C2—C3		1.383 (3)	C13–	-H13	0.93	00
С3—С9		1.452 (3)	C14-	C15	1.37	4 (4)
C3—C10		1.469 (3)	C14-	-H14	0.93	00
C4—C9		1.512 (3)	C15-	C16	1.38	6 (4)
C4—C5		1.520 (4)	C15-	-H15	0.93	00
C4—H4A		0.9700	C16–	-H16	0.93	00
C4—H4B		0.9700	C17–	-H17A	0.96	00
C5—C6		1.471 (4)	C17–	-H17B	0.96	00
C5—H5A		0.9700	C17–	-H17C	0.96	00
C5—H5B		0.9700				
C2—N1—H1A		120.0	С6—	-С7—Н7В	109.	6
C2—N1—H1B		120.0	H7A-	—С7—Н7В	108.	1
H1A—N1—H1	В	120.0	С9—	-C8—C7	127.	1 (2)
C10-N2-C11	1	129.7 (2)	С9—	-C8—S1	111.	86 (18)
C10-N2-H2		115.1	С7—	-C8—S1	120.	99 (18)
C11—N2—H2		115.1	C8—	-С9—С3	112.	7 (2)
C12—O2—C17	7	118.6 (2)	C8—	-C9—C4	119.	6 (2)
C2—S1—C8		92.08 (11)	С3—	-C9—C4	127.	6 (2)
N1—C2—C3		129.4 (2)	01—	-C10—N2	121.	7 (2)
N1—C2—S1		119.40 (17)	01—	-C10—C3	122.	4 (2)
C3—C2—S1		111.20 (17)	N2—	-C10—C3	115.	89 (19)
С2—С3—С9		112.2 (2)	C16-	C11C12	119.	3 (2)
C2—C3—C10		119.3 (2)	C16-	C11N2	125.	2 (2)
C9—C3—C10		128.45 (19)	C12-	C11N2	115.	5 (2)
C9—C4—C5		111.8 (2)	02—	-C12—C13	125.	0 (2)
C9—C4—H4A		109.2	02—	-C12—C11	114.	6 (2)
C5—C4—H4A		109.2	C13-		120.	4 (2)
C9—C4—H4B		109.2	C14-	C13C12	119.	6 (3)
C5—C4—H4B		109.2	C14–	—С13—Н13	120.	2
H4A—C4—H4	В	107.9	C12-	—С13—Н13	120.	2
C6—C5—C4		113.4 (3)	C15-	C14C13	120.	6 (2)

С6—С5—Н5А	108.9	C15-C14-H14	119.7
С4—С5—Н5А	108.9	C13-C14-H14	119.7
С6—С5—Н5В	108.9	C14—C15—C16	120.5 (3)
С4—С5—Н5В	108.9	C14—C15—H15	119.7
H5A—C5—H5B	107.7	С16—С15—Н15	119.7
C5—C6—C7	114.3 (3)	C11—C16—C15	119.6 (3)
С5—С6—Н6А	108.7	C11—C16—H16	120.2
С7—С6—Н6А	108.7	С15—С16—Н16	120.2
С5—С6—Н6В	108.7	O2-C17-H17A	109.5
С7—С6—Н6В	108.7	O2—C17—H17B	109.5
H6A—C6—H6B	107.6	H17A—C17—H17B	109.5
C8—C7—C6	110.4 (2)	O2—C17—H17C	109.5
С8—С7—Н7А	109.6	H17A—C17—H17C	109.5
С6—С7—Н7А	109.6	H17B—C17—H17C	109.5
С8—С7—Н7В	109.6		
C8—S1—C2—N1	-179.4 (2)	C5—C4—C9—C3	159.3 (2)
C8—S1—C2—C3	0.96 (18)	C11—N2—C10—O1	9.1 (4)
N1—C2—C3—C9	179.3 (2)	C11—N2—C10—C3	-173.1 (2)
S1—C2—C3—C9	-1.1 (2)	C2-C3-C10-O1	28.5 (3)
N1—C2—C3—C10	-3.4 (4)	C9—C3—C10—O1	-154.7 (2)
S1—C2—C3—C10	176.22 (16)	C2-C3-C10-N2	-149.3 (2)
C9—C4—C5—C6	45.6 (4)	C9—C3—C10—N2	27.4 (3)
C4—C5—C6—C7	-57.6 (4)	C10-N2-C11-C16	-20.0 (4)
C5—C6—C7—C8	37.7 (4)	C10-N2-C11-C12	160.2 (2)
C6—C7—C8—C9	-10.1 (4)	C17—O2—C12—C13	17.7 (4)
C6—C7—C8—S1	173.4 (2)	C17—O2—C12—C11	-163.6 (2)
C2—S1—C8—C9	-0.60 (19)	C16—C11—C12—O2	-177.3 (2)
C2—S1—C8—C7	176.4 (2)	N2-C11-C12-O2	2.6 (3)
C7—C8—C9—C3	-176.7 (2)	C16-C11-C12-C13	1.5 (4)
S1—C8—C9—C3	0.1 (3)	N2-C11-C12-C13	-178.7 (2)
C7—C8—C9—C4	0.9 (4)	O2-C12-C13-C14	178.7 (2)
S1—C8—C9—C4	177.63 (17)	C11-C12-C13-C14	0.0 (4)
C2—C3—C9—C8	0.6 (3)	C12-C13-C14-C15	-1.3 (4)
C10-C3-C9-C8	-176.3 (2)	C13-C14-C15-C16	1.0 (4)
C2—C3—C9—C4	-176.7 (2)	C12-C11-C16-C15	-1.8 (4)
C10—C3—C9—C4	6.4 (4)	N2-C11-C16-C15	178.4 (2)
C5—C4—C9—C8	-17.9 (3)	C14—C15—C16—C11	0.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1A…O1	0.86	2.27	2.823 (3)	122
N1—H1B···O1 ⁱ	0.86	2.28	3.015 (3)	143
N2—H2…O2	0.86	2.19	2.577 (3)	107
С16—Н16…О1	0.93	2.39	2.927 (3)	117
Symmetry codes: (i) $-x+1/2$, $y+1/2$, $-z+3/2$.				

Fig. 1

Fig. 2

